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Abstract. We pursue our investigation of the non-equilibrium dynamics of the backgammon
model, a dynamical urn model which exhibits aging and glassy behaviour at low temperature.
We present an analytical study of the scaling behaviour of the local correlation and response
functions of the density fluctuations of the model, and of the associated fluctuation–dissipation
ratios, throughout theα-regime of low temperature and long times. This analysis includes the
aging regime, the convergence to equilibrium, and the crossover behaviour between them.

1. Introduction

There is a long tradition in statistical physics of illustrating conceptual problems on extremely
simplified models [1]. The Ehrenfest dynamical urn model [2], which was considered by Kac
as ‘probably one of the most instructive models in the whole of physics’ [3], is an example
of these. It was devised to elucidate the problems raised by the objections of Loschmidt and
Zermelo against theH -theorem, and in particular to understand the fine details of how a system
relaxes towards equilibrium.

The Ehrenfest model is defined as follows. ConsiderN balls, labelled from 1 toN ,
distributed between two urns. The numbers of balls in the urns are denoted byN1 and
N2 = N − N1. At each time step a ball is chosen at random (i.e. an integer between 1
andN is chosen at random), and moved from the box where it is to the other box. If there was
initially an unequal number of balls in each urn, the system will relax to the equilibrium state,
characterized by the binomial law

P(N1) = 1

2N

(
N

N1

)
(1.1)

such that each urn contains, on average, an equal number of balls. This model, subsequently
studied by Kohlrausch and Schrödinger [4], was finally fully solved by Kac, Siegert and
Hess [5–7].

The present paper belongs to the same tradition. It is devoted to the analytical study of a
very simple urn model, which is actually a modern avatar of the Ehrenfest model, the so-called
backgammon model [8]. This model pertains to the recent stream of research where the study
of the slow dynamics of complex glassy systems is replaced by that of simple models, most
of them of mean-field type (for a recent review, see [9]). Its aim was to demonstrate that a
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microscopic model characterized by the absence of energy barriers was nevertheless able to
exhibit a number of the characteristic features of glassy dynamics.

The backgammon model generalizes the Ehrenfest model in two directions. First, it is
easy to realize that the dynamics of the Ehrenfest model is effectively at infinite temperature,
because there is no constraint on the move of the drawn ball. Therefore, in order to consider
the dynamics of the model at finite temperature, one has to define an energy and impose, e.g.,
a Metropolis rule for the move of the drawn ball: the move is allowed with probability one if
the energy decreases or stays unchanged, and with probability exp(−β1E) if it increases by
1E. The second generalization consists of takingM boxes instead of two, and in going to
the thermodynamical limit:N → ∞, M → ∞, with a fixed densityρ = N/M of balls per
box. These two generalizations define a class of ‘thermodynamical urn models’, of which the
backgammon model is a special case. In the backgammon model the energy is chosen equal
to minus the number of empty boxes [8].

Variants of this model have been considered, where either the choice of energy is different,
or thea priori statistics of the elementary moves is defined otherwise [10–13], or yet other
rules are imposed [14]. Mentions of the similarity of the backgammon model to the Ehrenfest
model can also be found in [15,16].

The expected behaviour of the model is easy to grasp. Denoting byNd the occupation
number of the departure box, determined by the selected ball, and byNa the occupation number
of the arrival box, drawn at random, four elementary moves are possible:

Nd > 1 Na > 0 : 1E = 0
Nd = 1 Na = 0 : 1E = 0

}
(diffusion)

Nd = 1 Na > 0 : 1E = −1 (condensation)
Nd > 1 Na = 0 : 1E = +1 (evaporation).

(1.2)

The first two moves, corresponding to diffusion of the balls, are independent of temperature.
The last two ones are respectively favoured at low temperature (condensation), and at high
temperature (evaporation)†.

Therefore, at infinite temperature, since once a ball is drawn it is replaced in a box chosen
at random, equilibrium is attained rapidly, characterized by a multinomial distribution of the
balls amongst the boxes, a simple generalization of the result for the original Ehrenfest model.
When temperature decreases, dynamics slows down because the rate of rejection of moves of
the drawn ball increases. At equilibrium and at low temperature, a few boxes contain a large
number of balls. Finally, at zero temperature the only moves allowed are those for which energy
decreases (condensation) or stays unchanged (diffusion). The dynamics becomes extremely
slow as time passes. Indeed the ultimate stage when all boxes but two are empty meets
the original Ehrenfest model with two boxes, except that now, if one box becomes empty,
the dynamics stops. Such an event occurs with a probability of orderP(N) = 2−N (see
equation (1.1)), so that the time needed to empty one of the two boxes in this ultimate stage
is exponentially large inN , and infinite in the thermodynamical limit. It is therefore clear
that, at low temperature, after a transient regime, two time scales are involved in the process:
a fast one, corresponding to the equilibration amongst the non-empty boxes, and a slow one,
corresponding to the occurrence of the rare event of emptying a new box. This picture, although
simple, accounts for the gist of the model.

A virtue of the backgammon model is that it allows one to test a number of concepts
which appear in the study of the non-equilibrium dynamics of real systems, although it is an

† We use on purpose the same words—diffusion, condensation and evaporation—as used in the description of the
elementary moves in the Kawasaki dynamics of an Ising chain [17]. There is indeed a strong analogy between the
latter model and a one-dimensional version of the backgammon model.
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extreme simplification of the latter. For instance, slow relaxational dynamics, aging properties,
exploration of the two-time plane, violation of the fluctuation–dissipation theorem [18], etc.
can be investigated in this model, either by numerical means [8], in a straightforward way, or
by analytical methods, which turn out to be much harder [10,19–23].

The relaxation of energy for the backgammon model was the subject of previous
studies [10,19–21,23]. More recently, the relaxation of density has been addressed by Franz
and Ritort [22], in order to investigate possible differences between the behaviour of this
observable and that of the energy. In the present work we give a thorough analytical study of
this question. The methods used are similar to those introduced in [23]. Our presentation will
therefore follow the lines of this reference, yet stay self-contained.

The outline of this paper is as follows. Section 2 defines the quantities studied in this
work and presents the dynamical equations they obey. In section 3 a formal solution of these
equations is obtained by the method of characteristics. section 4 makes contact with the original
Ehrenfest model by considering the simple situation of infinite temperature. The two main
sections of this work are section 5, devoted to equilibrium properties, and especially section 6,
which contains a detailed investigation of the non-equilibriumα-regime at low temperature.
section 7 gives a brief summary and a discussion.

2. Physical quantities and their dynamical evolution

Consider a finite system, made ofM boxes containingN particles. LetNi(t) be the occupation
number of box numberi at timet , i.e. the number of particles contained in that box. We have

M∑
i=1

Ni(t) = N. (2.1)

The HamiltonianH and actionS of the system at inverse temperatureβ read

S ≡ βH = −β
M∑
i=1

δNi,0. (2.2)

Instead of addressing the more ambitious goal of describing the dynamics of the model
by the configurationC = {N1, . . . , NM} involving all the occupation numbers, we restrict
our study to quantities involving the occupation number of one box only. We consider the
thermodynamical limit (N →∞,M →∞), with a fixed densityρ = N/M, and furthermore
restrict the analysis to the homogeneous non-equilibrium initial condition where there is one
particle per box. We thus haveN = M, ρ = 1, andNi(t = 0) = 1 for i = 1, . . . ,M.

2.1. Reminder: occupation probabilities and mean energy

Taking box number 1 as a generic box, we denote byfk(t) the probability that it containsk
particles at timet :

fk(t) = Prob{N1(t) = k}. (2.3)

The dynamical equations obeyed by the occupation probabilitiesfk(t) read (see e.g.
appendix A of [23] for a derivation)

dfk(t)

dt
= k + 1

3(t)
fk+1(t) + fk−1(t)−

(
1 +

k

3(t)

)
fk(t) (k > 2)

df1(t)

dt
= 2

3(t)
f2(t) +µ(t)f0(t)− 2f1(t)

df0(t)

dt
= f1(t)− µ(t)f0(t)

(2.4)
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with the initial value

fk(0) = δk,1 (2.5)

and where
1

3(t)
= 1 + (e−β − 1)f0(t) µ(t) = e−β + (1− e−β)f1(t). (2.6)

Equations (2.4) describe a birth–death process, i.e. a random walk on thek-axis with
position-dependent rates. The rate at which a ball enters a non-empty box (k > 1) is equal to
1, while it is equal toµ for an empty box. The first process is temperature independent as it
should be, since diffusion between non-empty boxes is not constrained by temperature. The
second process depends on temperature. For instance, at infinite temperature,µ is equal to
1, because moving a ball to an empty box is always allowed (diffusion and evaporation are
both permitted). At zero temperature,µ is equal tof1, which expresses the fact that moving
a ball to an empty box is allowed if the departure box contains one ball only (only diffusion
is permitted). The departure rate of a ball from a box containingk balls is equal tok/3(t).
Hence, there is equilibration ofk around3(t). At low temperature,3(t) ≈ (1− f0(t))

−1,
which is equal to the average number of balls in a non-empty box.

To summarize, equations (2.4) describe a random walk along thek-axis, in a confining
potential centred around3(t), which itself is slowly increasing, whenever the number of
empty boxes increases [10]. It is indeed intuitively clear that while the equilibration inside the
potential is fast, the evolution of3(t) is very slow at low temperature. This defines two time
scales, as mentioned in the introduction, or two regimes, which are to be identified respectively
with theβ- and theα-regime, characteristic of glassy relaxation [9].

Equations (2.4) can be formally rewritten as a Markovian system, of the form

dfk(t)

dt
=
∑
`>0

Mk`[f0(t), f1(t)]f`(t) (2.7)

where the matrixM[f0(t), f1(t)] satisfies∑
k>0

Mk`[f0(t), f1(t)] = 0. (2.8)

Actually, the reaction terms3(t) andµ(t) involvef0(t) andf1(t), which makes the dynamics
non-Markovian and the system of equations (2.4) or (2.7) nonlinear.

Equations (2.4) or (2.7) ensure the conservation of the moments∑
k>0

fk(t) = 1 〈N1(t)〉 =
∑
k>1

k fk(t) = 1 (2.9)

respectively corresponding to the total numbers of boxes and of particles. Finally, the mean
energy per box of the system readsE(t) = −〈δN1(t),0〉 = −f0(t).

2.2. Density correlation function

The density correlation functionc(t, s) measures the correlation between the number of
particles in box number 1 at timess (waiting time) andt (observation time), with 06 s 6 t :

c(t, s) = 〈N1(t)N1(s)〉 − 〈N1(t)〉〈N1(s)〉 = 〈N1(t)N1(s)〉 − 1. (2.10)

By definition, we have

〈N1(t)N1(s)〉 =
∑
j,k>1

jk Prob{N1(t) = k|N1(s) = j}Prob{N1(s) = j}. (2.11)



Correlation and response in the backgammon model 6037

Equation (2.10) can thus be rewritten as

c(t, s) =
∑
j,k>1

jkfj (s)g
(j)

k (t, s)− 1 (2.12)

where

g
(j)

k (t, s) = Prob{N1(t) = k|N1(s) = j} (2.13)

or else as

c(t, s) =
∑
k>1

kγk(t, s)− 1 (2.14)

with

γk(t, s) =
∑
j>1

jfj (s)g
(j)

k (t, s). (2.15)

Since the time variables plays the role of a parameter in the dynamics, bothg
(j)

k (t, s) and
γk(t, s) obey the dynamical equations

∂g
(j)

k (t, s)

∂t
=
∑
`>0

Mk`[f0(t), f1(t)]g
(j)

` (t, s) (2.16)

∂γk(t, s)

∂t
=
∑
`>0

Mk`[f0(t), f1(t)]γ`(t, s) (2.17)

with the initial conditions

g
(j)

k (s, s) = δk,j γk(s, s) = kfk(s) (2.18)

implying in particular

c(s, s) = 〈N1(s)
2〉 − 1=

∑
k>1

k2 fk(s)− 1 (2.19)

in agreement with equation (2.10). Equations (2.16), (2.17) ensure the conservation of
probability, i.e.∑

k>0

g
(j)

k (t, s) = 1
∑
k>0

γk(t, s) = 1. (2.20)

2.3. Density response functions

The local density response functionr(t, s) is a measure of the change in the density of box
number 1 at timet , induced by an infinitesimal change in the conjugate variable, i.e. in the
present case the local chemical potential acting on the same box, at the earlier times. Assume
that box number 1 is subjected to an arbitrary time-dependent chemical potential, given by
α(t) in reduced units. The perturbed action now reads

S(t) = −β
M∑
i=1

δNi(t),0 − α(t)N1(t). (2.21)

The occupation probabilities of box number 1 now depend onα(t): we denote them by
f αk (t) = Prob{N1(t) = k}. In the thermodynamical limit, i.e. to leading order asM → ∞,
the occupation probabilities of all the other boxes(i = 2, . . . ,M) are still given by thefk(t).
Indeed the mean-field geometry of the model implies that the mutual influence of any two
distinct boxes scales as 1/M.
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Assuming for simplicity|α(t)| < β, thef αk (t) obey the dynamical equations
df αk (t)

dt
= (k + 1)ν−(t)f αk+1(t) + ν+(t)f

α
k−1(t)− (ν+(t) + kν−(t))f αk (t) (k > 2)

df α1 (t)

dt
= 2ν−(t)f α2 (t) +µ+(t)f

α
0 (t)− (ν+(t) +µ−(t))f α1 (t)

df α0 (t)

dt
= µ−(t)f α1 (t)− µ+(t)f

α
0 (t)

(2.22)

with the initial value

f αk (0) = δk,1 (2.23)

and with the definitions
µ+(t) = f1(t)W(−α(t)) + (1− f1(t))e

−β+α(t)

µ−(t) = 1− f0(t) + f0(t)W(α(t))
ν+(t) = f1(t) + (1− f1(t))W(−α(t))
ν−(t) = (1− f0(t))W(α(t)) + f0(t)e

−β−α(t).

(2.24)

These equations can be derived along the same lines as in [23].
In the above expressions,

W(1S) = min(1, e−1S) (2.25)

is the Metropolis acceptance rate associated with a change of action1S ≡ β1E. This rate is
not differentiable at1S = 0. We have indeed

dW
d1S

∣∣∣∣
1S→0+

= −1
dW
d1S

∣∣∣∣
1S→0−

= 0. (2.26)

As a consequence, we are led to define the following two local response functions for the
density:

r±(t, s) = δ〈N1(t)〉
δα(s)

∣∣∣∣
α(s)→0±

. (2.27)

Introducing the quantities

h±k (t, s) =
δf αk (t)

δα(s)

∣∣∣∣
α(s)→0±

(2.28)

we have

r±(t, s) =
∑
k>1

kh±k (t, s). (2.29)

The dynamical equations for theh±k (t, s) are obtained by taking the functional derivative
of equations (2.22) with respect toα(s) for α(s)→ 0±. This yields

∂h±k (t, s)
∂t

=
∑
`>0

Mk`[f0(t), f1(t)]h
±
` (t, s) (2.30)

with the initial conditions

h+
k (s, s) = −

k + 1

3(s)
fk+1(s) +

k

3(s)
fk(s) (k > 2)

h+
1(s, s) = −

2

3(s)
f2(s) +µ(s)f0(s)

h+
0(s, s) = −µ(s)f0(s)

h−k (s, s) = −(k + 1)e−βf0(s)fk+1(s) + (1− f1(s))fk−1(s)

+(ke−βf0(s) + f1(s)− 1)fk(s) (k > 2)
h−1 (s, s) = −2e−βf0(s)f2(s) +µ(s)f0(s) + (f1(s)− 1)f1(s)

h−0 (s, s) = −µ(s)f0(s).

(2.31)
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We have ∑
k>0

h±k (t, s) = 0 (2.32)

at all timest > s. Furthermore, equations (2.31) imply that both response functions coincide
at initial times:

r+(s, s) = r−(s, s) = 1 + (2e−β − 1)f0(s)− f1(s) + 2(1− e−β)f0(s)f1(s). (2.33)

2.4. Fluctuation–dissipation ratios

The fluctuation–dissipation ratio provides a measure of the violation of the fluctuation–
dissipation theorem, and thus of the departure of the system from equilibrium [9, 18, 22].
In the present case, we need to define two fluctuation–dissipation ratios

X±(t, s) = r±(t, s)
∂c(t,s)

∂s

. (2.34)

These definitions contain no explicit temperature dependence, because a factor of temperature
has been absorbed in the definition of the reduced chemical potentialα(t).

We are thus led to investigate the quantity

∂c(t, s)

∂s
=
∑
k>1

kζk(t, s) (2.35)

with

ζk(t, s) = ∂γk(t, s)

∂s
. (2.36)

Fort > s, the dynamical equations obeyed by these quantities are deduced from equation (2.17)
and read

∂ζk(t, s)

∂t
=
∑
`>0

Mk`[f0(t), f1(t)]ζ`(t, s). (2.37)

Equation (2.31) implies∑
k>0

ζk(t, s) = ∂

∂s

∑
k>0

γk(t, s) = 0. (2.38)

Moreover, by integrating equation (2.17) for theγk(t, s) to first order inθ = t − s, we obtain
the initial values

ζk(s, s) =
∑
`>0

(k − `)Mk`[f0(t), f1(t)]f`(t) (2.39)

i.e.

ζk(s, s) = −k + 1

3(s)
fk+1(s) + fk−1(s) (k > 2)

ζ1(s, s) = − 2

3(s)
f2(s) +µ(s)f0(s)

ζ0(s, s) = −f1(s)

(2.40)

implying

∂c(t, s)

∂s

∣∣∣∣
t=s
= 2− c(s, s)

3(s)
+ f0(s) (µ(s)− 1) . (2.41)



6040 C Godr̀eche and J M Luck

3. Generating functions and integral representations

It is possible to obtain integral representations of the solutions of equations (2.4), (2.17), (2.30),
(2.37) by means of the generating functions

F(x, t) =
∑
k>0

fk(t) x
k G(x, t, s) =

∑
k>0

γk(t, s) x
k

H±(x, t, s) =
∑
k>0

h±k (t, s) x
k Z(x, t, s) =

∑
k>0

ζk(t, s) x
k.

(3.1)

These functions obey the partial differential equations

∂F (x, t)

∂t
= (x − 1)

(
F(x, t)− 1

3(t)

∂F (x, t)

∂x
− Yf (t)

)
∂G(x, t, s)

∂t
= (x − 1)

(
G(x, t, s)− 1

3(t)

∂G(x, t, s)

∂x
− Yγ (t, s)

)
∂H±(x, t, s)

∂t
= (x − 1)

(
H±(x, t, s)− 1

3(t)

∂H±(x, t, s)
∂x

− Yh±(t, s)
)

∂Z(x, t, s)

∂t
= (x − 1)

(
Z(x, t, s)− 1

3(t)

∂Z(x, t, s)

∂x
− Yζ (t, s)

)
.

(3.2)

TheY -functions which enter these equations read

Yf (t) = (1− e−β)f0(t) = 1− 1/3(t)

Yγ (t, s) = (1− e−β)
(
γ0(t, s) + f0(t)

∂γ0(t, s)

∂t
− df0(t)

dt
γ0(t, s)

)
Yh±(t, s) = (1− e−β)

(
h±0 (t, s) + f0(t)

∂h±0 (t, s)
∂t

− df0(t)

dt
h±0 (t, s)

)
Y
ζ
(t, s) = (1− e−β)

(
ζ0(t, s) + f0(t)

∂ζ0(t, s)

∂t
− df0(t)

dt
ζ0(t, s)

)
.

(3.3)

The initial conditions for equations (3.2) are derived from equations (2.5), (2.18), (2.31),
(2.40):

F(x, 0) = x
G(x, s, s) = x ∂F (x, s)

∂x

H +(x, s, s) = (x − 1)

(
1

3(s)

∂F (x, s)

∂x
+ e−βf0(s)− f1(s) + 2(1− e−β)f0(s)f1(s)

)
H−(x, s, s) = (x − 1)

(
(1− f1(s))F (x, s) + e−βf0(s)

∂F (x, s)

∂x

+ (1− e−β)f0(s)(2f1(s)− 1)
)

Z(x, s, s) = − 1

3(s)

∂F (x, s)

∂x
+ xF(x, s)− (1− e−β)f0(s) ((1− x)f1(s) + x) .

(3.4)

The conservation of moments expressed by equations (2.9), (2.20), (2.32), (2.38) implies

F(1, t) = ∂F (x, t)

∂x

∣∣∣∣
x=1

= G(1, t, s) = 1 H±(1, t, s) = Z(1, t, s) = 0. (3.5)

Equations (3.2) can be solved by the method of characteristics (see e.g. appendix B of [23]).
We thus obtain

F(x, t) = (1 + (x − 1)e−τ(t)
)

e(x−1)D(t,0) +
∫ t

0
duK(x, t, u)Yf (u)

G(x, t, s) = e(x−1)D(t,s) G
(
1 + (x − 1)eτ(s)−τ(t), s, s

)
+
∫ t

s

duK(x, t, u)Yγ (u, s)
(3.6)



Correlation and response in the backgammon model 6041

and expressions forH±(x, t, s) andZ(x, t, s) similar to that forG(x, t, s), with the definitions

τ(t) =
∫ t

0

du

3(u)
(3.7)

D(t, u) =
∫ t

u

dv eτ(v)−τ(t) (3.8)

K(x, t, u) = (1− x)eτ(u)−τ(t)+(x−1)D(t,u). (3.9)

The quantities of interest are given by

c(t, s) = ∂G(x, t, s)

∂x

∣∣∣∣
x=1

− 1 r±(t, s) = ∂H±(x, t, s)
∂x

∣∣∣∣
x=1

∂c(t, s)

∂s
= ∂Z(x, t, s)

∂x

∣∣∣∣
x=1

. (3.10)

Using equations (3.6) and the corresponding equations forH±(x, t, s)andZ(x, t, s), we obtain
finally

c(t, s) = D(t, s)− 1 + (c(s, s) + 1)eτ(s)−τ(t) −
∫ t

s

du eτ(u)−τ(t)Yγ (u, s)

r±(t, s) = r±(s, s)eτ(s)−τ(t) −
∫ t

s

du eτ(u)−τ(t)Yh±(u, s)

∂c(t, s)

∂s
= ∂c(s, s)

∂s
eτ(s)−τ(t) −

∫ t

s

du eτ(u)−τ(t)Yζ (u, s).

(3.11)

Settingx = 0 in equations (3.6), we get integral representations of the following quantities,
which will be useful in section 6:

f0(t) = (1− e−τ(t))e−D(t,0) +
∫ t

0
duK(0, t, u)Yf (u)

γ0(t, s) = e−D(t,s) G
(
1− eτ(s)−τ(t), s, s

)
+
∫ t

s

duK(0, t, u)Yγ (u, s)
(3.12)

with

K(0, t, u) = eτ(u)−τ(t)−D(t,u) = ∂

∂u
e−D(t,u) (3.13)

and similarly

h±0 (t, s) = e−D(t,s)H±
(
1− eτ(s)−τ(t), s, s

)
+
∫ t

s

duK(0, t, u)Y
h± (u, s)

ζ0(t, s) = e−D(t,s)Z
(
1− eτ(s)−τ(t), s, s

)
+
∫ t

s

duK(0, t, u)Yζ (u, s).
(3.14)

4. Infinite-temperature behaviour

At infinite temperature, the backgammon model, which is a ‘thermodynamical’ generalization
of the Ehrenfest model, as discussed in the introduction, is solvable. The solutions given in
equations (3.6), (3.11) indeed become explicit, because of the simplifications e−β = 3(t) =
µ(t) = 1.
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4.1. Reminder: occupation probabilities and mean energy

SinceYf (t) = 0, we have

F(x, t) = (1 + (x − 1)e−t )e(x−1)(1−e−t ). (4.1)

The occupation probabilities thus read

fk(t) = ((1− e−t )2 + ke−t )
(1− e−t )k−1ee−t−1

k!
(4.2)

yielding, in particular, the mean energy

E(t) = −f0(t) = −(1− e−t )ee−t−1. (4.3)

4.2. Correlation and response, fluctuation–dissipation ratios

Similarly, noticing thatYγ (t, s) = Yh±(t, s) = Yζ (t, s) = 0, we get

G(x, t, s) = (1 + (x − 1)es−t )(1 + (x − 1)e−t (1− e−s))e(x−1)(1−e−t )

H +(x, t, s) = (x − 1)[(es + (x − 1)e−t (e−s − 1))e(x−1)(1−e−t )−t

−e(x−1)(1−es−t )−s−t+e−s−1]

H−(x, t, s) = (x − 1)e(x−1)(1−e−t )−t [(1 + (x − 1)e−t )e(x−1)s

−(1 + (x − 1)es−t )e−s+e−s−1]

Z(x, t, s) = (x − 1)((x − 1)e−t + 1 + e−2s)e(x−1)(1−e−t )+s−t .

(4.4)

We thus have

c(t, s) = (1− e−2s)es−t r±(t, s) = (1− e−2s+e−s−1)es−t

∂c(t, s)

∂s
= (1 + e−2s)es−t . (4.5)

Note that both response functions coincide for all times at infinite temperature:r+(t, s) =
r−(t, s), whereas the generating functionsH±(x, t, s) are different from each other. The
common value of the fluctuation–dissipation ratios is independent oft , and reads

X±(t, s) = 1− e−2s+e−s−1

1 + e−2s
. (4.6)

At equilibrium, i.e. fors � 1, the correlation and response functions only depend on the time
differenceθ = t − s, and they fulfil the fluctuation–dissipation theorem (see section 5):

ceq(θ) = r±eq(θ) = −
dceq(θ)

dθ
= e−θ . (4.7)

Equivalently,X±(t, s) in equation (4.6) goes to unity ass →∞.

5. Equilibrium properties

5.1. Reminder: occupation probabilities and mean energy

At any finite temperature and for long enough times, the system converges towards thermal
equilibrium. The occupation probabilities at equilibrium are given by the stationary solution
of the dynamical equations (2.4):

(fk)eq= e−3eq
3k−1

eq

k!
(k > 1)− Eeq= (f0)eq= 3eq− 1 + e−3eq

3eq
= eβ−3eq

3eq
(5.1)
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where3eq, the equilibrium value of3(t), is related to temperature by

eβ = 1 + (3eq− 1)e3eq. (5.2)

This quantity can be identified with the thermodynamical fugacity of the model (see appendix C
of [23]). Note that the most probable non-zero occupancy is approximately equal to3eq, in
agreement with the discussion given below equation (2.6).

At low temperature, we have

3eq= β − ln β +
ln β + 1

β
+

ln2 β − 1

2β2
+ · · ·

Eeq= −1 +
1

β
+

ln β

β2
+

ln2 β − ln β − 1

β3
+ · · ·.

(5.3)

Finally, the generating function of the equilibrium occupation probabilities reads

Feq(x) = 3eq− 1 + e(x−1)3eq

3eq
. (5.4)

The convergence towards equilibrium is characterized by a relaxation timet̃eq (denoted
ast (1)eq in [23]), which is exponentially divergent at low temperature (see equation (6.9)).

5.2. Density correlation and response functions

At equilibrium, the density correlation functionc(t, s) = ceq(θ) and response functions
r±(t, s) = r±eq(θ) are stationary: they only depend on the time differenceθ = t − s.

These quantities can be derived from equations (3.11), where all integrals become
convolutions. These equations can therefore be solved in Laplace space. Denoting byĉeq(p)

the Laplace transform ofceq(θ), and using similar conventions for the other functions, we
obtain after some algebra

r̂+
eq(p) = r̂−eq(p) = 3eq− pĉeq(p) (5.5)

which express that both density response functions coincide at equilibrium, and that they obey
the identity

r±eq(θ) = −
dceq(θ)

dθ
. (5.6)

In other words, the fluctuation–dissipation ratiosX±(θ) are identically equal to unity at
equilibrium, expressing thus the fluctuation–dissipation theorem.

Furthermore, we obtain the explicit results

r̂±eq(p) =
3eq− (3eq− 1)

(
p + 1/(f0)eq

) (
K̂(p,3eq)− 3eqe−3eq

1+p3eq

)
(1 +p3eq)(3eq− (3eq− 1)(p + 1/(f0)eq)K̂(p,3eq))

(5.7)

where

K̂(p,3eq) = 3eq

∫ 1

0
dz zp3eqe3eq(z−1) = e−3eq

∑
k>0

1

p + k/3eq

3k−1
eq

(k − 1)!
(5.8)

is the Laplace transform of the equilibrium kernel

K(θ,3eq) = exp(−θ/3eq−3eq(1− e−θ/3eq)). (5.9)

The expression (5.7) is a meromorphic function, whose denominator coincides with that
found in [23] in the case of the energy correlation and response functions. This denominator
has an infinite sequence of zeros on the real negative axis, which we denote byp = −p(2)k ,
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with k > 1. The relaxation time of the equilibrium correlation and response functionsteq

(denoted ast (2)eq in [23]) is given by the inverse of the smallest one:

teq= 1

p
(2)
1

. (5.10)

At low temperature,teq is exponentially divergent (α-relaxation), while all the other
characteristic times remain microscopic, i.e. of order3eq (β-relaxation). Indeed, we have

teq≈ (3eq− 1)e3eq

32
eq

(32
eqe
−3eqI (3eq) + 1−3eq)

≈ 2e3eq

3eq

(
1 +

2

32
eq

+ · · ·
)
≈ 2eβ

β2

(
1 +

2 lnβ + 1

β
+ · · ·

)
(5.11)

with

I (3) =
∫ 1

0

dz

z
(e3z − 1) =

∑
n>1

3n

n n!
≈ e3

3

∑
`>0

`!

3`
. (5.12)

The density correlation and response functions read

r±eq(θ) =
∑
k>1

Ake
−p(2)k θ ceq(θ) =

∑
k>1

Ak

p
(2)
k

e−p
(2)
k θ (5.13)

where theAk are the residues of expression (5.7) at the polesp = −p(2)k . In particular, the
values of these functions at equal times(θ = 0)provide the following sum rules for the residues
Ak:

r±eq(0) =
∑
k>1

Ak = 1 + (3eq− 1)e−3eq

3eq
ceq(0) =

∑
k>1

Ak

p
(2)
k

= 3eq. (5.14)

The only difference between expressions (5.13) of the density correlation and response
functions at equilibrium and those for the energy [23] lies in the values of the residues:Ak for
the density andak for the energy, with

Ak

ak
=
(
(3eq− 1)(p(2)k − 1/(f0)eq)

3eqp
(2)
k − 1

)2

. (5.15)

Finally, the analysis presented in this section leads to the following description of the
behaviour of the equilibrium density correlation and response functions at low temperature.

• In theβ-regime(θ ∼ 1), expression (5.7) simplifies to

r̂±eq(p) = 3eq− pĉeq(p) ≈ 1

1 +p3eq
(5.16)

up to an exponentially small correction. We thus obtain

r±eq(θ) ≈
e−θ/3eq

3eq
ceq(θ) ≈ 3eq− 1 + e−θ/3eq. (5.17)

• In theα-regime(θ ∼ teq), the expressions (5.13) are dominated by the first term(k = 1).
The corresponding residue can be estimated asA1 ≈ (3eq− 1)/teq. We thus have

r±eq(θ) ≈
3eq− 1

teq
e−θ/teq ceq(θ) ≈ (3eq− 1)e−θ/teq. (5.18)

• In the crossover between both regimes(1� θ � teq), the density correlation and response
functions exhibit the plateau values

(r±eq)pl ≈ 3eq− 1

teq
(ceq)pl ≈ 3eq− 1. (5.19)
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6. Non-equilibrium behaviour at low temperature

In this section, we shall extend to density fluctuations the low-temperature analysis developed
in [21,23]. This analytical approach is valid at low temperature, throughout the non-equilibrium
α-regime (s � 1, t − s � 1), irrespective of the relative values ofs or t with respect to the
relaxation timeteq.

6.1. Reminder: mean energy

In the case of the mean energy, our approach consists in simplifying the first integral equation
of equations (3.12), by expanding the integrand as a power series int−u. Keeping consistently
the first two terms of this expansion, we are left with the following differential equation:

f0(t) ≈ e−3(t) + J0(t)Yf (t) + J1(t)
dYf (t)

dt
(6.1)

with

J0(t) =
∫ ∞

0
dε K(ε,3(t)) = K̂(0,3(t)) = 1− e−3(t)

J1(t) = −
∫ ∞

0
dε ε K(ε,3(t)) = dK̂(p,3(t))

dp

∣∣∣∣∣
p=0

= −3(t)e−3(t)I (3(t)).
(6.2)

This approach leads to the evolution equation [23]
d3

dt
≈ A(3(t),3eq) (6.3)

with

A(3,3eq) = 1

I (3)

(
1− (3− 1)e3

(3eq− 1)e3eq

)
. (6.4)

Equation (6.3) describes the relaxation of energy throughout theα-regime at low
temperature. In particular,

• At zero temperature, and more generally in the aging regime(1� t � teq), we have
d3

dt
≈ 1

I (3)
(6.5)

hence

t ≈
∫ 3

0
d3′ I (3′) =

∫ 1

0

dz

z2
(e3z − 1−3z) =

∑
n>1

3n+1

n(n + 1)!
≈ e3

3

∑
`>0

(` + 1)!

3`
(6.6)

or else

3(t) ≈ ln t + ln ln t +
ln ln t − 2

ln t
+ · · · . (6.7)

• In the opposite limit(t � teq), the convergence of3(t) towards its equilibrium value3eq

is exponential,

3eq−3(t) ∼ e−t/t̃eq (6.8)

with a relaxation time

t̃eq≈ 3eq− 1

3eq
I (3eq)

≈ e3eq

3eq

(
1 +

1

32
eq

+ · · ·
)
≈ eβ

β2

(
1 +

2 lnβ + 1

β
+ · · ·

)
(6.9)

which is roughly equal to half the relaxation timeteq of the correlation and response
functions, given in equation (5.11).
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6.2. Correlation and response, fluctuation–dissipation ratios

The low-temperature approach consists in simplifying the integral equations (3.12), (3.14) for
γ0(t, s), h

±
0 (t, s), andζ0(t, s) into the differential equations

γ0(t, s) ≈ e−3(t) + J0(t, s)Yγ (t, s) + J1(t, s)
∂Yγ (t, s)

∂t

h±0 (t, s) ≈ J0(t, s)Yh±(t, s) + J1(t, s)
∂Yh±(t, s)

∂t

ζ0(t, s) ≈ J0(t, s)Yζ (t, s) + J1(t, s)
∂Yζ (t, s)

∂t
.

(6.10)

These expressions lead, after some algebra, to the differential evolution equation

1

φ(t, s)

∂φ(t, s)

∂t
≈ −B(3(t),3eq) (6.11)

whereφ(t, s) denotes eitherγ0(t, s)− f0(t), h
±
0 (t, s), or ζ0(t, s), and with

B(3,3eq) =
A(3,3eq) +32

(
e−3 + e−3eq

3eq−1

)
3(32e−3I (3) + 1−3) . (6.12)

Changing time variables froms andt to3(s) and3(t), we obtain the alternative form

1

φ(t, s)

∂φ(t, s)

∂3(t)
≈ −α(3(t),3eq) (6.13)

with

α(3,3eq) = B(3,3eq)

A(3,3eq)
. (6.14)

The normalized solution of the differential equation (6.13) reads

φ(t, s) ≈ exp

(
−
∫ 3(t)

3(s)

d3′ α(3′,3eq)

)
. (6.15)

This result can be recast into a multiplicative scaling law

φ(t, s) ≈ 8(3(s),3eq)

8(3(t),3eq)
(6.16)

with

8(3,3eq) = exp

(∫ 3

1
d3′ α(3′,3eq)

)
. (6.17)

Finally, using equations (3.11) and the definitions of theY -functions, we obtain the scaling
predictions

c(t, s)

cpl(s)
≈ r±(t, s)

r±pl (s)
≈ ∂c(t, s)/∂s

(∂c/∂s)pl (s)
≈ 3(t)

3(s)

8(3(s),3eq)

8(3(t),3eq)
(6.18)

throughout the non-equilibriumα-regime, which constitute the main result of this section. The
plateau valuescpl(s), r

±
pl (s), and(∂c/∂s)pl (s) in equation (6.18) are the initial conditions for

the dynamical equations (6.11), (6.13). These plateau values generalize the results (5.19) to
the generic non-equilibrium situation at low temperature. They are attained when the fast(β)

modes are extinct, i.e. for 1� θ = t − s � s. These quantities, which are non-trivial in
general, remain to be determined, since their evaluation does not pertain to the analysis of the
α-regimestricto sensu.
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Figure 1. Plot of the zero-temperature correlation functionc(t, s) against ln(t − s), for different
values of the waiting times, indicated on the curves. Full curves: exact numerical results.
Dashed curves: left (β-regime): equation (6.20); right (α-regime): scaling law (6.18), with plateau
value (6.19).

In the case of the correlation functionc(t, s), the plateau value

cpl(s) = 3(s)− 1 (6.19)

is simply obtained by replacing3eq by 3(s) in the expression (5.19) at equilibrium. More
generally, we have

c(t, s) ≈ ceq(t − s;3(s)) ≈ 3(s)− 1 + e−(t−s)/3(s) (6.20)

(see equation (5.18)) in the non-equilibriumβ-regime. This expression amounts to saying
that the system is somehow at an instantaneous equilibrium described by3(s). This simple
description is only justified for moderate times (t − s � s), and for quantities, such asc(t, s),
which remain of order unity for long waiting times and/or at low temperature.

Figure 1 illustrates the validity of the above description. The zero-temperature correlation
functionc(t, s) is plotted against ln(t−s), for different values of the waiting times, indicated on
the curves. The full curves show the result of a direct numerical integration of equations (2.4),
(2.17). The dashed curves show (to the left, in theβ-regime) equation (6.20) and (to the
right, in theα-regime) the scaling law (6.18), with the plateau value (6.19). The quantitative
agreement between the exact numerical data and their analytical description is increasingly
convincing as the waiting times increases.

The evaluation of the other plateau values, namely(∂c/∂s)pl(s) andr±pl (s), requires more
care, since these quantities are already exponentially small at equilibrium. A sketch of the
method used for their derivation is given in the appendix.

First, one finds(
∂c

∂s

)
pl

(s) ≈ 3(s)2e−3(s)

3(s)2e−3(s)I (3(s)) + 1−3(s) =
3(s)− 1

teq[3(s)]
(6.21)

whereteq[3(s)] is obtained from equation (5.11) by replacing3eq by 3(s). Although the
expression (6.21) is simple, since it can be obtained by replacing3eqby3(s) in the equilibrium
result (5.19), its derivation is not.
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Figure 2. Plot of the zero-temperature plateau valuesX+
pl(s) (upper data) andX−pl(s) (lower data),

against lns. Full curves: exact numerical results. Dashed curves: analytical predictions (6.25).

The values ofr±pl (s), obtained along the same lines, have the more intricate expressions

r+
pl(s) ≈

3(s)2e−3(s) −3(s)A(3(s),3eq)
(
(3(s)− 1)e−3(s)I (3(s))− 1 + 1

3(s)2

)
3(s)2e−3(s)I (3(s)) + 1−3(s)

r−pl (s) ≈
3(s)2e−3(s) −3(s)A(3(s),3eq)

(
3(s)e−3(s)I (3(s))− 1− 1

3(s)
+ 1
3(s)2

)
3(s)2e−3(s)I (3(s)) + 1−3(s) .

(6.22)

The scaling result (6.18) implies that the fluctuation–dissipation ratiosX±(t, s) stay
constant and equal to their plateau values

X±pl(s) =
r±pl (s)

(∂c/∂s)pl(s)
(6.23)

throughout the non-equilibriumα-regime, i.e. fort − s � 1. Equations (6.21), (6.22) lead to

X+
pl(s) ≈ 1− e3(s)A(3(s),3eq)

3(s)

(
(3(s)− 1)e−3(s)I (3(s))− 1 +

1

3(s)2

)
X−pl(s) ≈ 1− e3(s)A(3(s),3eq)

3(s)

(
3(s)e−3(s)I (3(s))− 1− 1

3(s)
+

1

3(s)2

)
.

(6.24)

These expressions interpolate between the equilibrium valuesX±pl(s) = 1 for s � teq, and the
non-trivial values

X+
pl(s) ≈

1

3(s)
+

(
1− 1

3(s)2

)
e3(s)

3(s)I (3(s))
≈ 1− 2

3(s)2
− 2

3(s)3
− 12

3(s)4
+ · · ·

X−pl(s) ≈
(

1 +
1

3(s)
− 1

3(s)2

)
e3(s)

3(s)I (3(s))
≈ 1− 3

3(s)2
− 3

3(s)3
− 15

3(s)4
+ · · ·

(6.25)

at zero temperature, and more generally in the aging regime, i.e. fors � teq.
Figure 2 illustrates the above predictions. The zero-temperature plateau valuesX±pl(s) are

plotted against lns, for s up to 105. The full curves show the limit values limt→∞X±(t, s),
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obtained by extrapolating the numerical solutions of equations (2.4), (2.17), (2.30), (2.37).
The dashed curves show the analytical predictions (6.25), whose accuracy becomes extremely
high for the larger values of the waiting times.

The above results can be compared with the expression for the zero-temperature plateau
value of the fluctuation–dissipation ratio associated with energy fluctuations, derived in [23]:

X
energy
pl (s) ≈ 3(s)(3(s)− 1)

3(s)2e−3(s)I (3(s)) + (3(s)− 1)2
≈ 1− 2

3(s)2
− 4

3(s)3
− 6

3(s)4
+ · · · .

(6.26)

The expressions (6.25), (6.26) of the three fluctuation–dissipation ratios are very similar. All
these ratios asymptotically converge to the value 1, characteristic of equilibrium, albeit with
large correction terms, which only decay as 1/3(s)2 ≈ 1/(ln s)2, i.e. logarithmically slow
with the waiting times. More surprisingly, in the present case of density fluctuations, the
difference

X+
pl(s)−X−pl(s) ≈

1

3(s)

(
1− e3(s)

3(s)I (3(s))

)
≈ 1

3(s)2
+

1

3(s)3
+

3

3(s)4
+ · · · (6.27)

which is entirely due to the discontinuous slope of the Metropolis acceptance rate (see
equation (2.26)), and hence dependent on our choice of a microscopic dynamics for the model,
exhibits the very same logarithmically slow fall-off in 1/(ln s)2.

To conclude, we give a more detailed account of the dependence on both time scaless

andt of the scaling law (6.18):

• At zero temperature, and more generally in the aging regime(s � teq), we have

α(3,∞) = 32e−3I (3) + 1

3
(
32e−3I (3) + 1−3) ≈ 1

2
+

1

23
− 1

32
− 7

233
+ · · · (6.28)

hence

8(3(s),∞) ≈ (3(s)e3(s))1/2(1 +
1

3(s)
+

9

43(s)2
+ · · ·

)
≈ s1/2 ln s

(
1 +

ln ln s

ln s
+

4 ln ln s − 9

4(ln s)2
+ · · ·

)
. (6.29)

Therefore, in the aging regime(s, t � teq), the right-hand side of the scaling law (6.18)
roughly obeys a square-root behaviour, namely

3(t)

3(s)

8(3(s),∞)
8(3(t),∞) ≈

( s
t

)1/2
(

1 +
1

4

(
1

(ln t)2
− 1

(ln s)2

)
+ · · ·

)
. (6.30)

• In the opposite limit(s � teq), describing the convergence towards equilibrium, the
scaling function8 blows up exponentially, as

8(3(s),3eq) ≈ C(3eq)e
s/teq (6.31)

with ans-independent prefactor. In this regime, the scaling law (6.18) therefore exhibits
an exponential decay,

3(t)

3(s)

8(3(s),3eq)

8(3(t),3eq)
≈ e−(t−s)/teq (6.32)

characteristic of equilibrium properties.
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7. Summary and discussion

The present work, a sequel of [10, 21, 23], is devoted to a thorough study of the density
correlation and response functions and of the associated fluctuation–dissipation ratios for
the backgammon model, a mean-field dynamical model introduced in the context of glassy
dynamics [8]. We thus provide analytical predictions for the most salient findings of Franz
and Ritort [22] for the relaxational dynamics of the density fluctuations of the model, both at
equilibrium and away from equilibrium.

Let us first summarize our main results. Consider the situation at equilibrium and low
temperature. The correlations in the backgammon model possesses a spectrum of relaxation
times with an exponential separation of time scales, between aβ-regime of fast relaxation,
involving the microscopic time scale, and a slowα-regime, characterized by the relaxation
time teq ≈ 2e3eq/3eq ≈ 2eβ/β2, where3eq ≈ β is the fugacity of the system. The two-time
correlation and response functions are stationary, i.e., they only depend on the time difference
θ = t − s. The density correlation function reads (see equation (5.18))

ceq(θ) ≈ e−θ/3eq︸ ︷︷ ︸
β-regime

+ (3eq− 1)e−θ/teq︸ ︷︷ ︸
α-regime

. (7.1)

This expression accounts for the superposition of the fastβ-relaxation (θ ∼ 1 or3eq), and the
slowα-relaxation (θ ∼ teq). As a consequence, equation (7.1) exhibits a well-defined plateau
value (see equation (5.19))

(ceq)pl ≈ 3eq− 1 (7.2)

throughout the crossover between both regimes, i.e. for 1� θ � teq. The same conclusions
hold for the response, with

req(θ) = − d

dθ
ceq(θ) (7.3)

which expresses the fluctuation–dissipation theorem.
One of the most striking outcomes of [21,23], further extended in the present work, is that

the exponential separation of fast (β) and slow (α) modes still holds in a generic non-equilibrium
situation. This simplifying feature allows an analytical treatment of the non-equilibriumα-
regime at low temperature. Throughout this regime, we predict that the density correlation
and response functions obey multiplicative scaling laws of the form (see equation (6.18))

c(t, s)

cpl(s)
≈ r±(t, s)

r±pl (s)
≈ ∂c(t, s)/∂s

(∂c/∂s)pl (s)
≈ 3(t)

3(s)

8(3(s),3eq)

8(3(t),3eq)
. (7.4)

These scaling laws hold at low temperature (teq� 1) and throughout theα-regime (s � 1,
t − s � 1), irrespective of the ratioss/teq or (t − s)/teq. When these ratios are small, i.e., at
zero temperature, and more generally in the aging regime, the rightmost side of equation (7.4)
assumes an approximate inverse-square-root law(s/t)1/2 (see equation (6.30)). Conversely,
when the above ratios are large, i.e. in the regime of convergence towards equilibrium at a
low but finite temperature, this rightmost side exhibits an exponential fall-off, of the form
exp(−(t − s)/teq), characteristic of the equilibriumα-relaxation.

Moreover, in the case of the correlation function, the crossover between the non-
equilibrium β- andα-regimes can be described by a simple additive formula, generalizing
the equilibrium result (7.1), as

c(t, s) ≈ e−(t−s)/3(s)︸ ︷︷ ︸
β-regime

+ (3(s)− 1)
3(t)

3(s)

8(3(s),3eq)

8(3(t),3eq)︸ ︷︷ ︸
α-regime

. (7.5)



Correlation and response in the backgammon model 6051

This result, illustrated in figure 1, amounts to saying that in the non-equilibriumβ-regime the
system is somehow at an instantaneous equilibrium, described by3(s). The validity of such a
description is related to the simplicity of the non-equilibrium plateau value (see equation (6.19))

cpl(s) = 3(s)− 1. (7.6)

The same holds for the derivative∂c(t, s)/∂s. In contrast, for the response functionsr±(t, s),
there is still a well-defined separation of a fast and a slow component away from equilibrium,
but this separation is non-trivial, as it involves the plateau valuesr±pl (s), which are complicated
functions ofs, even at zero temperature (see equations (6.22)).

It is worth comparing the results of this paper for the correlation and response of the density
with those found for the correlation and response of the energy [21, 23]. First, as underlined
in [22], the density correlation has an appreciable variation over short time scales, i.e. in the
β-regime, while the energy correlation remains essentially constant in this regime. Second, in
theα-regime, the scaling law (7.4) of the correlation and response functions of the density is
very similar to that of the energy [23]. As it turns out, both scaling functions only differ by the
prefactor3(t)/3(s). Finally, in the present case of density fluctuations, because of the choice
of a Metropolis dynamics, it is necessary to introduce two response functions,r±(t, s), and
accordingly two fluctuation–dissipation ratios,X±(t, s). This subtlety was not needed in the
case of energy fluctuations. A surprising outcome of the present study is that the difference
X+

pl(s)−X−pl(s), which reflects the choice of the microscopic dynamics of the model, persists
in theα-regime, where it exhibits a logarithmically slow fall-off (see equation (6.27)).

As can be seen on these results, the backgammon model is helpful in giving clear-
cut analytical answers to some recurrent questions in the ongoing investigation of the slow
dynamics of non-equilibrium systems. This knowledge in turn is of interest to see whether one
can discriminate between non-equilibrium systems by their relaxational behaviour, encoded
in the correlation and response, or equivalently in the behaviour of the fluctuation–dissipation
ratio. Thus, in the present case, is the backgammon model more akin to a coarsening system,
or to a mean-field spin-glass model, or yet to another case?

In some respects, the quantity3(t), which is omnipresent in our description of the
dynamics of the model, plays the role of the mean domain sizeL(t), which is the only
characteristic length scale in a system undergoing phase ordering [24, 25]. Another common
salient feature of the present model and of coarsening systems is that the scaling form (7.4)
of the correlation functionc(t, s) involves the ratio of a function of3(t) to the same function
of 3(s). On the other hand, as far as the fluctuation–dissipation ratio is concerned, there is a
maximal discrepancy between the present model at zero temperature, where both fluctuation–
dissipation ratiosX±(t, s) go asymptotically to unity (with a large logarithmic correction,
illustrated in figure 2), and coarsening systems, for which the fluctuation–dissipation ratio is
observed to go to zero [26–28]. (The interpretation of the latter behaviour is that the long-time
response comes from the movement of the domain walls, and therefore becomes more and
more negligible as the domains grow [27, 28].) This discrepancy is actually due to the fact
that the critical temperature of the backgammon model isTc = 0. As a consequence, the
low-temperature phase, where aging persists forever, is reduced to the critical point of the
model. More generally, as will be presented elsewhere [29], the fluctuation–dissipation ratio
exhibits special features for systems quenched to their critical point.
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Appendix. Derivation of non-equilibrium plateau values

In this appendix, we present the method used in section 6.2 for the evaluation of the plateau
valuesr±pl (s) and(∂c/∂s)pl(s) in the generic non-equilibrium situation.

Let us take the example of the latter quantity. First, equation (3.11) implies(
∂c

∂s

)
pl

(s) = −3(s)(Yζ )pl(s). (A.1)

Second,(Yζ )pl(s) can be estimated by performing a Laplace transform on equations (3.3),
(3.14). We thus obtain after some algebra(

∂c

∂s

)
pl

(s) ≈ −3(s) 3(s)Sζ (s) + (3(s)− 1)f1(s)

3(s)2e−3(s)I (3(s)) + 1−3(s) (A.2)

with

Sζ (s) = 3(s)
∫ 1

0
dx

e−3(s)x

1− x Z(x, s, s) (A.3)

whereZ(x, s, s) is given in equation (3.4) in terms of the generating seriesF(x, s) of the
occupation probabilities.

Generalizing the equilibrium results derived in section 5, we anticipate thatSζ (s) is
exponentially small in3(s). As a consequence, it is not legitimate to estimateF(x, s) by
just replacing3eq by 3(s) in the equilibrium result (5.4). In other words, we first have to
derive a better evaluation of the occupation probabilities in theα-regime at low temperature.
This can be done by seeking a solution to the first partial differential equation of equation (3.2)
in the form

F(x, s) = 3(s)− 1 + e(x−1)3(s)

3(s)
+ e(x−1)3(s)1(x, s) (A.4)

where the first term represents the occupation probabilities at the instantaneous equilibrium
described by3(s) (see equation (5.4)), while the correction term1(x, s) is assumed to be
small. Equation (3.2) yields a differential equation for1(x, s), which can be integrated as

1(x, s) = −d3(s)

ds

∫ 1

x

dy
e(1−y)3(s) − (1− y)3(s)− 1

(1− y)3(s) . (A.5)

This expression is proportional to d3(s)/ds, i.e. exponentially small in3(s), as expected.
The result (A.5) has several consequences.

• Settingx = 0 in equation (A.5), we obtain1(0, s) ≈ −(d3(s)/ds)I (3(s))/3(s).
Remarkably enough, we thus recover the evolution equation (6.3) for3(s) itself.
• By expanding equation (A.4) to second order in(x − 1), we obtain

c(s, s) = 〈N1(s)
2〉 − 1=

∑
k>0

k2 fk(s)− 1= ∂2F(x, s)

∂x2

∣∣∣∣
x=1

≈ 3(s)− 3(s)A(3(s),3eq)

2
. (A.6)

The second moment of the density fluctuations is thus given by the simple formula
corresponding to the Poisson law of parameter3(s), namelyc(s, s) = 〈N1(s)

2〉 − 1 =
3(s), based on the picture of an instantaneous equilibrium described by3(s), up to an
exponentially small correction, proportional to d3/ds ≈ A(3(s),3eq).
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• Similarly, we can evaluate the initial values of the fluctuation–dissipation ratiosX±(s, s).
We have indeedr±(s, s) ≈ ∂c(s, s)/∂s ≈ 1/3(s), and

∂c(s, s)

∂s
− r±(s, s) = 1− e−βf0(s) +

1

3(s)
(f1(s)− c(s, s))

≈
(

1

2
+

1

3(s)2

)
A(3(s),3eq) (A.7)

hence

X±(s, s) ≈ 1−
(

1

2
+

1

3(s)2

)
3(s)A(3(s),3eq). (A.8)

The violation of the fluctuation–dissipation theorem at initial times is thus exponentially
small, as it is again proportional to d3(s)/ds. We have in particular

X±(s, s) ≈ 1−
(

1

2
+

1

3(s)2

)
1

I (3(s))
≈ 1− 3(s)e

−3(s)

2
(A.9)

at zero temperature.
• Finally, coming back to our main goal, i.e. the derivation of the plateau value of
(∂c/∂s)pl(s), we insert equations (A.4), (A.5) into the expression (3.4) forZ(x, s, s),
and then perform the integral (A.3). All the integrals brought by the correction term
1(x, s) can be expressed in terms ofI (3(s)) and of elementary functions. We are thus
left with (

∂c

∂s

)
pl

(s) ≈ 3(s)2e−3(s)

3(s)2e−3(s)I (3(s)) + 1−3(s) (A.10)

i.e. the result announced in equation (6.21). The results (6.22) have been derived along
the very same lines.
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